Factorise : $2 x^{2}+7 x+3$
$2 x^{2}+7 x+3$
Here, $a =2,\, b =7$ and $c =3$
$\therefore \quad l+ m =7$ and $lm =2 \times 3=6$ i.e. $1+6=7$ and $1 \times 6=6$
$ \therefore $ $l=1$ and $m =6$
We have $ 2 x ^{2}+7 x +3=2 x ^{2}+x +6 x +3 $
$= x (2 x +1)+3(2 x +1)=(2 x +1)( x +3) $
Thus, $\quad 2 x^{2}+7 x+3=(2 x+1)(x+3)$
Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $x+\pi$
Evaluate the following products without multiplying directly : $103 \times 107$
Factorise : $27 x^{3}+y^{3}+z^{3}-9 x y z$
Find the zero of the polynomial : $p(x) = x -5$
Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=5 x-\pi, \,\,x=\frac{4}{5}$